A high-performance software package for semidefinite programs: SDPA 7

نویسندگان

  • Makoto Yamashita
  • Katsuki Fujisawa
  • Kazuhide Nakata
  • Maho Nakata
  • Mituhiro Fukuda
  • Kazuhiro Kobayashi
  • Kazushige Goto
چکیده

The SDPA (SemiDefinite Programming Algorithm) Project launched in 1995 has been known to provide high-performance packages for solving large-scale Semidefinite Programs (SDPs). SDPA Ver. 6 solves efficiently large-scale dense SDPs, however, it required much computation time compared with other software packages, especially when the Schur complement matrix is sparse. SDPA Ver. 7 is now completely revised from SDPA Ver. 6 specially in the following three implementation; (i) modification of the storage of variables and memory access to handle variable matrices composed of a large number of sub-matrices, (ii) fast sparse Cholesky factorization for SDPs having a sparse Schur complement matrix, and (iii) parallel implementation on a multi-core processor with sophisticated techniques to reduce thread conflicts. As a consequence, SDPA Ver. 7 can efficiently solve SDPs arising from various fields with shorter time and less memory than Ver. 6 and other software packages. In addition, with the help of multiple precision libraries, SDPA-GMP, -QD and -DD are implemented based on SDPA to execute the primal-dual interior-point method with very accurate and stable computations. The objective of this paper is to present brief explanations of SDPA Ver. 7 and to report its high performance for large-scale dense and sparse SDPs through numerical experiments compared with some other major software packages for general SDPs. Numerical experiments also show the astonishing numerical accuracy of SDPA-GMP, -QD and -DD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0)

The SDPA (SemiDefinite Programming Algorithm) is a software package for solving general SDPs (SemiDefinite Programs). It is written in C++ with the help of LAPACK for numerical linear algebra for dense matrix computation. The purpose of this paper is to present a brief description of the latest version of the SDPA and its high performance for large scale problems through numerical experiment an...

متن کامل

A parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion

A parallel computational method SDPARA-C is presented for SDPs (semidefinite programs). It combines two methods SDPARA and SDPA-C proposed by the authors who developed a software package SDPA. SDPARA is a parallel implementation of SDPA and it features parallel computation of the elements of the Schur complement equation system and a parallel Cholesky factorization of its coefficient matrix. SD...

متن کامل

SDPARA: SemiDefinite Programming Algorithm paRAllel version

The SDPA (SemiDefinite Programming Algorithm) is known as efficient computer software based on primal-dual interior-point method for solving SDPs (Semidefinite Programs). In many applications, however, some SDPs become larger and larger, too large for the SDPA to solve on a single processor. In execution of the SDPA applied to large scale SDPs, the computation of the so-called Schur complement ...

متن کامل

Sdpa Project : Solving Large-scale Semidefinite Programs

The Semidefinite Program (SDP) has recently attracted much attention of researchers in various fields for the following reasons: (i) It has been intensively studied in both theoretical and numerical aspects. Especially the primal-dual interior-point method is known as a powerful tool for solving large-scale SDPs with accuracy. (ii) Many practical problems in various fields such as combinatorial...

متن کامل

NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials

NCSOStools is a Matlab toolbox for • symbolic computation with polynomials in noncommuting variables; • constructing and solving sum of hermitian squares (with commutators) programs for polynomials in noncommuting variables. It can be used in combination with semidefinite programming software, such as SeDuMi, SDPA or SDPT3 to solve these constructed programs. This paper provides an overview of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010